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This paper addresses the problem of controlling a nonlinear plant with a slow actuator

using singular perturbation method. For the known plant-actuator cascaded system the

proposed scheme achieves tracking of a given reference model with considerably less control

demand than would otherwise result when using conventional design techniques. This is

the consequence of excluding the small parameter from the actuator dynamics via time

scale separation. The resulting tracking error is within the order of this small parameter.

For the unknown system the adaptive counterpart is developed based on the prediction

model, which is driven towards the reference model by the control design. It is proven that

the prediction model tracks the reference model with an error proportional to the small

parameter, while the prediction error converges to zero. The resulting closed-loop system

with all prediction models and adaptive laws remains stable. The benefits of the approach

are demonstrated in simulation studies and compared to conventional control approaches.

I. Introduction

In many applications, the plant to be controlled has much slower dynamics than the actuator through
which it is being controlled. That is, the cascaded plant-actuator system can be described as

ẋ(t) = f (x(t)) + g(x(t))y(t)

εż(t) = a(z(t)) + b(z(t))u(t)

y(t) = c(z(t)) , (1)

where x(t) ∈ R
n is the plant’s state, z(t) ∈ R

m is the actuator’s state, y(t) ∈ R is the actuator’s output,
u(t) ∈ R is the actuator’s input, and ε is a small constant. For these types of systems, the singular pertur-
bations method has been successfully used for control design.6 This approach requires some interconnection
conditions to be satisfied, which can be imposed directly on the systems under the consideration (See for
example16) or in terms of Lyapunov functions and their derivatives (See for example13). The developed
controllers typically achieve local results (stability or asymptotic stability) of closed-loop systems (See for
example Refs.2, 6, 8 just to mention a few of them). However, for some systems, global exponential stability
can be achieved.1 As it is shown in Ref.,5 when the exponential stability is achieved, the actuator’s dynamics
can be neglected and the actuator’s output can be viewed as a control input for the plant. Therefore, the
control design can follow any known scheme that is suitable for the given plant dynamics.

In some applications, the actuator dynamics can be substantially slower than the plant’s dynamics. That
is, the cascaded plant-actuator system is now described by the equations

ẋ(t) = f(x(t)) + g(x(t))y(t)

ε−1ż(t) = a(z(t)) + b(z(t))u(t)

y(t) = c(z(t)) . (2)
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This is the case when the specific actuator, which is designed to control the plant in ordinary scenarios,
fails, and the substitute is used to rescue the emergency situation. For example, the aircraft engine can
be used for the directional stability and control of the aircraft when the control surface deflection system
fails. However, the engine dynamics is known to be much slower than the aircraft’s rotational dynamics with
the rudder input. For these types of problems, the actuator dynamics cannot be ignored, and the actual
control input has to be designed to generate the necessary actuator output. In general, the actual control
input depends is inversely proportional to the small parameter, thus resulting in high gain control signal.
Therefore, to generate the necessary torque or force, the actuator may require a control signal exceeding the
physical limits.

The goal of this paper is to show that the application of the singular perturbation method based time
scale separation can avoid demanding high magnitude control signals, and to develop a control algorithm
that guarantees the stable tracking of a given reference command in the presence of modeling uncertainties
and external disturbances.

The rest of the paper is organized as follows. First, we give preliminaries for the singular perturbations
method, then we apply the method to the known plant’s and actuator’s dynamics. Afterwards, we present
time scale separation based control design for the unknown system and provide stability analysis. Throughout
the paper bold symbols are used for vectors, capital letters for matrices and small letters for scalars.

II. Preliminaries

Consider the singular perturbation model (1) with initial conditions x(0) = x0, z(o) = z0. We assume
that the functions f (x) and g(x) are continuously differentiable on some open connected set Dx ⊂ R

n, and
the functions a(z) and b(z) are continuously differentiable on some open connected set Dz ⊂ R

m. Let the
control input have the form u(t) = ϕ(t,x, z), where the function ϕ(t,x, z) and its first partial derivatives
with respect to (t,x, z) are continuous and bounded on any compact subset of ×Dx ×Dz.

The model is said to be in standard form if the algebraic equation

a(z) + b(z)ϕ(t,x, z) = 0 (3)

has isolated roots for all (t,x) ∈ [0,∞) ×Dx.
Let z = h(t,x) be an isolated root of (3). The system

ẋ(t) = f (x(t)) + g(x(t))h(t,x(t)) , x(0) = x0 (4)

is called a reduced system. Denote the solution of (4) by x̄(t).
Introduce a change of variables ξ = z − h(t,x) and t = ετ . The system

dξ(τ)

dτ
= a(ξ + h(t,x)) + b(ξ + h(t,x))ϕ(t,x, ξ + h(t,x)) , ξ(0) = z0 − h(0,x0) (5)

where (t,x) ∈ [0,∞) ×Dx are treated as fixed parameters, is called a boundary layer system.
In this paper, for the stability analysis of the closed-loop systems, we will use the following version of

Theorem 11.2 from Ref.5

Theorem 1 Consider the singular perturbation problem for system (1) with initial conditions x(0) = x0,
z(o) = z0 and control input u(t) = ϕ(t,x, z). Let z = h(t,x) be an isolated root of the algebraic equation
(3). Assume that the following conditions are satisfied

• The functions f(x) and g(x) are continuously differentiable on Dx;

• The function a(z), b(z) and c(z) are continuously differentiable on Dz;

• The function ϕ(t,x, z) ant its first partial derivatives with respect to its arguments are continuous and
bounded on any compact subset of Dx ×Dz;

• The origin is an exponentially stable equilibrium point of the reduced system (4), Rx is the region of
attraction;

• The origin is an exponentially stable equilibrium point of the boundary-layer system (5), uniformly in
(t,x), Rz is the region of attraction.



Then, for each compact set Ωx ⊂ Rx and Ωz ⊂ Rz there is a positive constant ε∗ such that for all t ≥ 0,
x0 ∈ Ωx, z0 − h(0,x0) ∈ Ωz and 0 < ε < ε∗, the singular perturbation problem (1) has a unique solution
x(t, ε), z(t, ε) on [0,∞), and

x(t, ε) − x̄(t) = O(ε) (6)

holds uniformly for all t ≥ 0. Moreover, there exists a time instance T (ε) such that

z(t, ε) − h(t, x̄(t)) = O(ε) (7)

holds uniformly for all t ≥ T (ε).

III. Problem Formulation

Consider a single-input single-output system

ẋp(t) = Apxp(t) + bp [fp(xp(t)) + gp(xp(t))ya(t) + dP (t)]

yp(t) = c⊤p xp(t) , (8)

with the initial conditions x(0) = xp0, where xp ∈ R
n is the plant’s state, fp(xp) and gp(xp) are continuously

differentiable unknown functions representing the modeling uncertainties, and ya(t) ∈ R is the control effort
generated by a slow actuator. It is reasonable to assume that the actuator’s dynamics are stable, minimum
phase and of known relative degree r, and are described by the system

ε−1ẋa(t) = Aaxa(t) + ba [ωu(t) + fa(ya(t),pa) + da(t)]

ya(t) = c⊤a xa(t) (9)

with initial conditions xa(0) = xa0. Here, xa ∈ R
m is the actuator’s state, Aa is a Hurwitz matrix, the

transfer function Ga(s) = c⊤a (sI − Aa)−1ba has stable zeros, ε is a small parameter, ω ∈ (0, 1] represents
the possible reduction in actuator’s control effectiveness, fa(ya,pa) is a continuously differentiable function
representing the modeling uncertainties, u(t) is the actuator’s control input, and time signals dp(t) and da(t)
represent unknown external disturbances.

We notice that the actuator’s dynamics do not depend on the plant’s state to be controlled. However,
the dynamics may depend on other external variables, which are lumped into the parameter pa. In general,
the actuator’s state is not available for feedback. Therefore, the actuator related part of the overall control
design must be considered in output feedback framework, assuming that the signal ya(t) is available for
feedback.

To guarantee the controllability of the plant, we also assume that the pair (Ap, bp) is controllable, the
pair (Ap, cp) is observable, and the function gp(xp) never crosses zero. Without loss of generality, we take
gp(xp) as a positive function, that is, there exists a positive constant g0 such that gp(xp) ≥ g0 > 0.

The control objective is to design an input signal u(t) for the actuator such that the system’s output
yp(t) tracks the output of a given reference model

ẋm(t) = Amxm(t) + b⊤

myc(t)

ym(t) = c⊤xm(t) , (10)

with initial conditions xm(0) = xm0, where yc(t) is an external command that is bounded with its first
time derivative. Here, Am is a Hurwitz matrix of the form Am = Ap − bpk

⊤ for some control gain k, and

bm = νbp with ν =
(
c⊤p A

−1
m bp

)−1
. Since Am is Hurwitz, there exist a symmetric positive definite matrix P

such that

A⊤

mP + PAm = −Q (11)

for some symmetric positive definite matrix Q.



IV. Control design for known systems

In this section, we show that the magnitude of a control signal designed by the proposed time scale
separation based algorithm is smaller than the magnitude of a control signal generated by the conventional
algorithms by a term that is of the order of ε−1. For comparison, we use backstepping design,7 which is well
suited for the cascaded system comprised of the dynamics in (8) and the actuator dynamics (9). To this
end we assume that the systems under consideration are known and disturbance free. Also, for the purposes
of this section we assume that the functions fp(xp), gp(xp) and ga(ya) are sufficiently smooth, and the
reference command and its sufficiently many time derivatives are bounded. In this case, for convenience we
write the actuator dynamics in the following normal form10

ε−1ẋc
a(t) = A0x

c
a(t) + b0[−k⊤

a xa(t) + v(t)]

ε−1ξ̇
c

a(t) = Ac
0ξ

c
a(t) + bc

axc
a(t)

ya(t) = c0x
c
a(t) , (12)

where xc
a ∈ R

r is the portion of the actuator’s state corresponding to the chain of r integrators represented
by the triplet (c⊤0 ∈ R

r, A0 ∈ R
r×r, b0 ∈ R

r) having the form

A0 =

[

0 Ir−1

0 0

]

, c0 =







1
...

0






, b0 =







0
...

1






,

ξc
a ∈ R

m−r is the actuator’s internal state, and the eigenvalues of Ac
0 ∈ R

(m−r)×(m−r) are the stable zeros
of the actuator’s transfer function Ga(s). For the notational simplicity, we introduce a new control variable
v(t) = bωu(t) + bga(ya(t),pa), where b 6= 0 is the high frequency gain. Since the function ga(xa,pa) and
parameters ω and b are assumed to be known, u(t) can be readily computed after designing v(t).

Let the tracking error be e(t) = xp(t) − xm(t). Its dynamics can be written as

ė(t) = Ame(t) + bp

[

k⊤xp(t) + fp(xp(t)) + gp(xp(t))ya(t) − νyc(t)
]

. (13)

Since for the error dynamics (13) there exists a continuously differentiable feedback control law in the form

ya(t) = α1(t,xp) = g−1
p (xp(t))

[

−k⊤xp(t) − fp(xp(t)) − νyc(t)
]

, (14)

that guarantees that the derivative of the radially unbounded Lyapunov function

V1(e(t)) = e⊤(t)Pe(t) (15)

is negative definite for all e ∈ R
n

V̇1(t) = −e⊤(t)Qe(t) < 0 , (16)

the linear block backstepping lemma (Lemma 2.23) from Ref.7 can be applied. To be prepared for that
application, we introduce change of variables zc(t) = T cxc

a(t), where T c = diag(1, ε, . . . , εr−1). In these new
variables, the first equation in (12) takes the form

żc
i (t) = zc

i+1(t), i = 1, . . . , r − 1

ε−rż0
r(t) = −k⊤

a xa(t) + v(t)

ya(t) = zc
1(t) . (17)

Denoting ηi(t) = zc
i (t) − αi(t,x), i = 1, . . . , r, where the stabilizing functions αi(t,xp) are defined as

α2(t,xp) = −λ1η1(t) + α̇1(t,xp) − e⊤(t)Pbpgp(xp(t))

αi(t,xp) = −λi−1ηi−1(t) − ηi−2(t) + α̇i−1(t,xp) , i = 3, . . . , r , (18)



and λi > 0, i = 1, . . . , r − 1 are design parameters, the error system is written in the form









ė(t)

η̇1(t)
...

η̇r−1(t)









︸ ︷︷ ︸

ẋ(t)

=









Ame(t) + bpgp(xp)η1(t)

−λ1η1(t) + η2(t) − e⊤(t)Pbpgp(xp)
...

−ηr−2(t) − λr−1ηr−1(t)









︸ ︷︷ ︸

f(t,x)

+









0

0
...

1









︸ ︷︷ ︸

g

ηr(t)

ε−rη̇r(t) = −k⊤

a xa(t) − ε−rα̇r(t,xp) + v(t) (19)

We define the control law as

vb(t) = k⊤a xa(t) − λrηr(t) − ε−rηr−1(t) + ε−rα̇r(t,xp) , (20)

where λr > 0 is a design parameter. Then the closed-loop error system is reduced to

ẋ(t) = f (t,x(t)) + gηr(t)

ε−rη̇r(t) = −λrηr(t) − ε−rηr−1(t) . (21)

Lemma 1 The control signal (20) guarantees the boundedness of all closed-loop signals and the exponential
convergence of the errors e(t) and ηi(t), i = 1, . . . , r to zero.

Proof. Consider the following candidate Lyapunov function

V2(e(t), η(t)) = V1(e(t)) + η2
1(t) + · · · + η2

r (t) . (22)

Its derivative can be readily computed to satisfy the inequality

V̇2(t) = −e⊤(t)Qe(t) − λ1η
2
1(t) − · · · − λr−1η

2
r−1(t) − ελrη

2
r (t) < −µV2(t) (23)

for all e(t) ∈ R
n and z(t) ∈ R, where µ = λ−1

max(P )min
[
λ−1

min(Q), λ1, . . . , λr−1,−ε
rλr

]
with λmax(P ) denoting

the maximum eigenvalue of the matrix P . Since V2(t) is radially unbounded, the inequality (23) implies
the global exponential stability of the system (21). Since the reference input yc(t) is bounded, from the
boundedness of e(t) and xm(t) the boundedness of x(t) follows. Therefore, α(t,x) is bounded, implying the
boundedness of zc(t). Therefore, the state xc

a(t) is bounded. Then, the boundedness of internal state ξc
a(t)

follows from the input to state stability of the actuator’s internal dynamics. �

Remark 1 We notice that the control signal ub(t) is comprised of two parts. The first part does not contain
high gain and is designed from the perspective of retaining the slow mode of the actuator’s dynamics, since
it cannot be altered without a high magnitude input signal. The second part is inversely proportional to the
small parameter ε and is designed to cancel interconnecting terms. This part is a potential source of the high
magnitude command that can exceed the actuator’s physical limits.

Next, we apply singular perturbation method to the cascaded error system (19), and introduce a new
(slow) time variable τ = εrt. Ignoring the actuator’s input to state stable internal dynamics and substituting
τ results in the following system

εr x(τ)

dτ
= f(τ,x) + gηr(τ)

dηr(τ)

dτ
= −k⊤

a xa(τ) + v(τ) −
dαr(τ,xp)

dτ
. (24)

This is a singular perturbation problem. It is in the standard form if the algebraic equation

f(τ,x) + gηr(τ) = 0 . (25)

has isolated roots. Here we are concerned about the conditions of the existence of the isolated roots in
general. For our purposes it is sufficient to note that the equation (25) has a root x∗ = [e = 0, η1 =



0, . . . , ηr−2 = 0, ηr−1 = λ−1
r−1ηr(t), which we denote by x∗ = h(t, ηr). Introducing a change of variables

ζ(τ) = x(τ) − h(t, ηr), the boundary layer system is obtained from the first equation in (24) as follows

dζ(t)

dt
= f(t, ζ(t)) . (26)

It is easy to see that the system (26) has an equilibrium at the origin. The reduced system takes the form

dηr(τ)

dτ
= −k⊤

a xa(τ) + v(τ) −
dαr(τ,xp)

dτ

∣
∣
e=h(τ,ηr)

. (27)

Unlike the previous case, here the control signal v(τ) is designed to stabilize only the reduced system (27)
and has the form

vp(t) = k⊤

a xa(t) − λrηr(t) + ε−rα̇r(t,xp)|e=h(t,ηr) . (28)

Applying the control signal vp(t) results in the following closed-loop reduced systems in the real time scale t

η̇r(t) = −εrλrηr(t) , (29)

which has a globally exponentially stable equilibrium at the origin (ηr = 0).

Lemma 2 Under the control action (28), the singular perturbation problem (24) with initial conditions
e0, η1(0), . . . , ηr(0) has a unique solution e(t, ε), η1(t, ε), . . . , ηr(t, ε), which satisfies the relationship

ηr(t, ε) − η̄r(t) = O(ε) (30)

for all t ≥ 0, where η̄r(t) is the unique solution of the reduced system (27) with the initial condition ηr(o) =
zc

r(0) − αr(0,x0). Further, there exists a time instance T ∗ such that the relationship

x(t, ε) = O(ε) . (31)

holds for all t ≥ T ∗. Moreover, all closed-loop signals are bounded.

Proof. Consider the candidate Lyapunov function

V3(e(t), η(t)) = V1(e(t)) + η2
1(t) + · · · + η2

r−1(t) . (32)

Its derivative along the trajectories of boundary layer system (26) can be easily computed to satisfy the
inequality

V̇3(ζ(t), z(t)) < −µV3(ζ(t), z(t)) , (33)

with µ = λ−1
max(P )min

[
λ−1

min(Q), λ1, . . . , λr−1

]
, which implies the global exponential stability of the boundary

layer system. The smoothness and boundedness conditions of Theorem 1 follow from the assumptions
imposed in this section. Therefore, from Theorem 1 it follows that (30) holds for all t ≥ 0, and there exists
a time instance T (ε) such that the relationship

x(t, ε) − h(t, ηr(t)) = O(ε) (34)

holds for all t ≥ T (ε). From the exponential stability of (29) it follows that there exists a time instant T1

such that ηr(t) = O(ε) for t ≥ T1. Then, from the definition of h(t,x(t)) it follows that the relationship
h(t,x(t)) = O(ε) holds for t ≥ T1. Therefore (33) holds for t ≥ T ∗, where T ∗ = max[T (ǫ), T1]. From the
above relationship and the boundedness of the reference model (10) it follows that the plant’s state xp(t) is
bounded, implying the boundedness of the stabilizing functions αi(t,xp), i = 1, . . . , r. Since η(t) is bounded,
the boundedness of zc(t) follows, implying also the boundedness of the actuator’s state xc

a(t). From the
properties of the actuator’s internal dynamics it follows that the internal state ξc

a(t) is bounded as well. �

Remark 2 Instead of the exponential tracking achieved by the backstepping control vb(t) (20), the control
law vp(t) (28) achieves only ε-tracking for the original error dynamics, with a transient time greater than
T ∗]. However, the latter control signal has a smaller magnitude than the former one. To see this, we first
notice from the continuity of the function α̇(t,x) that α̇(t, x) − α̇(t, x)|e=h̄(t,z) = O(ε). Taking into account
the relationship (80), we can write

vb(t) − vp(t) = O(ε) − ε−rηr−1(t) (35)

which implies that the two control signals differ by the high gain term ε−rηr−1(t), which is inversely propor-
tional to εr and comes from vb(t) (20).



V. Control design for uncertain systems

In this section, we solve the same control problem assuming uncertain plant’s and actuator’s dynamics
that are also subject to external disturbances dp(t) and da(t) respectively, which have bounded derivatives.
To be precise, we assume that the parameter ω, matrices A and Aa, vector ba, and continuously differentiable
functions fp(xp), gp(xp), ga(ya) are unknown. The control objective is to design a control law that uses the
plant’s state xp(t) and the actuator’s output ya(t) for feedback to achieve tracking of the reference model
(10).

As in conventional adaptive control, using the universal approximation theorem, we approximate the
unknown functions by radial basis functions networks on compact sets Ωx and Ωya

fp(xp) = w⊤

f ϕf (xp) + δf (xp)

gp(xp) = w⊤

g ϕg(xp) + δg(xP )

ga(ya,pa) = w⊤

a ϕa(ya) + δa(ya) , (36)

where δf (xp), δg(xp) and δa(ya) are the approximation errors, uniformly bounded by positive constants δ∗f ,
δ∗g and δ∗a respectively. Using the relationships (36), the error dynamics (13) can be written as

ė(t) = Ame(t) + bp

[

k⊤xp(t) + w⊤

f ϕf (xp) + w⊤

g ϕg(xp)ya(t) + σp(t,xp, ya) − νyc(t)
]

, (37)

where σp(t,xp, ya) = δf (xp(t))+ δg(xp(t))ya(t)+dp(t) is the combined disturbance term, which is uniformly
bounded by a positive constant σ∗

1 as long as xp(t) ∈ Ωx and ya(t) ∈ Ωy.
In this section, we assume that the actuator’s dynamics has a relative degree m− r+1 and is represented

in the following observer canonical form

ε−1ẋa(t) = A0xa(t) − qya(t) + ba [u(t) + ga(ya(t),pa) + da(t)]

ya(t) = c⊤0 xa(t) , (38)

where A0 and c0 are defined similar to definitions in the previous section with r replaced by m, q ∈ R
m is an

unknown constant vector, and ba = [0 . . . ba,m−r+1 . . . bam]⊤. Since the actuator’s dynamics is of relative
degree m − r + 1, the ba,m−r+1 is not zero. Let it be positive. Taking into account the approximation in
(36), the dynamics of xa(t) is written as

ε−1ẋa(t) = A0xa(t) − qya(t) + ba

[
u(t) + w⊤

a ϕa(ya) + σa(t, ya)
]
. (39)

where σa(t, ya) = δa(ya)+da(t) is the combined disturbance term, which is uniformly bounded by a positive
constant σ∗

a as long as ya ∈ Ωya
.

To avoid generating high gain control signals we again apply the singular perturbation method. However,
the method cannot be directly applied, since the exponential stability properties for the resulting boundary
layer and reduced systems cannot be establish in the adaptive control framework without parameter conver-
gence. The latter can be guaranteed only for sufficiently rich regressor or input signals, which in general is
difficult to verify a priory. As an intermediate step, we follow the approach from Ref.4 and design suitable
prediction models for which the exponential stability properties can be guaranteed, and hence Tikhonov’s
theorem can be applied. The control objective is met when the closeness of the prediction models to the
corresponding dynamics is established. This will be done by the choice of adaptive laws independent of the
control design.

A. Prediction models

We consider the following prediction model for the plant’s tracking error dynamics

˙̂e(t) = Amê(t) + b
[

k̂
⊤

(t)x(t) + ŵ
⊤

f (t)ϕf (x) + ŵ
⊤

g (t)ϕg(x)ŷa(t) + σ̂p(t)sign (ψ(t)) − νyc(t)
]

, (40)

where the initial conditions ê(0) is chosen identical with e(0), ψ(t) = [e(t) − ê(t)]⊤Pbp, and all variables
with ”hat” are the estimates of the corresponding variables without ”hat”, and are available for the control



design. Let the prediction errors be ẽ(t) = e(t) − ê(t). Its dynamics can be written in the form

˙̃e(t) = Amẽ(t) + bp

[
k̃
⊤

(t)xp(t) + w̃⊤

f (t)ϕf (xp) + w̃⊤

g (t)ϕg(xp)ya(t)

+ ŵ⊤

g (t)ϕg(xp)ỹa(t) + σp(t,xp, ya) − σ̂p(t)sign
(
ψ(t)

)]
, (41)

where we introduce parameter estimation errors k̃(t) = k− k̂(t), w̃f (t) = wf − ŵf (t), w̃g(t) = wg − ŵg(t),
σ̃p(t) = σ∗

p − σ̂p(t).
To be able to introduce a suitable prediction model for the actuator dynamics in (39), we re-parameterize

them following conventional adaptive observer-estimator scheme (see for example9, 15) and introduce filters

ε−1β̇1(t) = (A0 − b0k⊤

0 )β1(t) + b0ya(t), β1(0) = 0

ε−1β̇2(t) = (A0 − b0k⊤

0 )β2(t) + b0u(t), β2(0) = 0

ε−1β̇3(t) = (A0 − b0k⊤

0 )β3(t) + b0σa(t, ya), β3(0) = 0

ε−1Ξ̇(t) = (A0 − b0k⊤

0 )Ξ(t) + b0ϕ⊤

a (ya), Ξ(0) = 0 , (42)

where b0 = [0 . . . 1 b0r+1 . . . b0m]⊤ is chosen such that the pair (A0, b
0) is controllable and the polynomial

sm−r + b0r+1s
m−r−1 + · · · + b0m is Hurwitz, and the vector k0 is chosen such that the matrix A0 − b0k⊤

0 is
Hurwitz. The actuator’s output ya(t) is represented as

ya(t) = ϑ⊤

1 ω1(t) + ϑ⊤

2 ω2(t) + w⊤

a ω3(t) + σf (t) , (43)

where ϑ1 ∈ R
m and ϑ1 = [bam . . . ba,m−r+1]

⊤ ∈ R
r are unknown constant parameters to be estimated

online, ω1(t) = β1(t), ω2(t) = [β21(t) . . . β2r(t)]
⊤, ω3(t) = c⊤0 Ξ(t) and σf (t) = c⊤0 β3(t). Since the filters

are stable from the boundedness of the inputs the boundedness of the outputs follow. That is σf (t) is
bounded by some positive constant σ∗

f since σa(t, ya) is bounded and the vector function ω3(t) is bounded
since the RBFs are bounded. The prediction model for the actuator dynamics in (39) is introduced as

ŷa(t) = ϑ̂
⊤

1 (t)ω1(t) + ϑ̂
⊤

2 (t)ω2(t) + ŵ
⊤

a (t)ω3(t) + σ̂f (t)sign(ψ(t)) , (44)

where again the variables with ”hat” are the estimates of the corresponding variables without ”hat”, and
ỹa(t) = ya(t) − ŷa(t) is the prediction error, which is given by the equation

ỹa(t) = ϑ̃
⊤

1 (t)ω1(t) + ϑ̃
⊤

2 (t)ω2(t) + w̃⊤

a (t)ω3(t) + σf (t) − σ̂f (t)sign(ψ(t)) , (45)

where ϑ̃1(t) = ϑ1 − ϑ̂1(t), ϑ̃2(t) = ϑ2 − ϑ̂2(t) and w̃a(t) = wa − ŵa(t).
Since g(xp) is assumed to be positive, the neural network approximation (36) can be chosen such that

the unknown weights wg are positive.11 The RBFs can be chosen to be positive as well. Then the product
w⊤

g (t)ϕg(xp) is always positive. Therefore, it is reasonable to design the adaptive law such that all compo-
nents of ŵg(t) are positive. This will be done by means of the projection operator.12 In the same fashion,

since ϑ2,r > 0, the adaptive law for ϑ̂2,r(t) is designed to keep it positive. Having this in mind, we design

the adaptive laws for the estimates k̂(t), ŵf (t), ŵg(t), σ̂p(t) as follows

˙̂σp(t) = γ |ψ(t)|

˙̂
k(t) = γxp(t)ψ(t)

˙̂wf (t) = γϕf (x)ψ(t)

˙̂wg(t) = γΠ
{
ŵg(t), ya(t)ϕg(xp)ψ(t)

}
, (46)

where γ > 0 is the adaptation rate, Π{·, ·} denotes the projection operator,12 introduced here to keep the
estimates ŵg(t) bounded away from zero.

The adaptive law for ϑ̂2,r(t) is defined by means of the projection operator.

˙̂
ϑ2,r(t) = γΠ

(

ϑ̂2r(t), ỹa(t)ω2r(t) + ŵ⊤

g (t)ϕg(x)ψ(t)ω2r(t)
)

. (47)



The remaining adaptive laws are

˙̂
ϑ1(t) = γỹa(t)ω1(t) + γŵ

⊤

g (t)ϕg(x)ψ(t)ω1(t)

˙̂
ϑ2i(t) = γ

(

ỹa(t)ω2i(t) + ŵ⊤

g (t)ϕg(x)ψ(t)ω2i(t)
)

, i = 1, . . . , r − 1

˙̂wa(t) = γỹa(t)ω3(t) + γŵ
⊤

g (t)ϕg(x)ψ(t)ω3(t)

˙̂σf (t) = γ|ỹa(t)| + γŵ⊤

g (t)ϕg(x)|ψ(t)| , (48)

where the projection operator Π (·, ·) is introduced to keep ω̂(t) positive.
The following lemma guarantees the closeness of the prediction models to the corresponding dynamics.

Lemma 3 The adaptive laws (46), (47) and (48) guarantee boundedness of the estimates k̂(t), ŵf (t), ŵg(t), σ̂p(t)

as well as ϑ̂1(t), ŵa(t), ϑ̂1(t), σ̂f (t) and the prediction errors ẽ(t) and ỹa(t). Moreover, ẽ(t) ∈ L2 and
ỹa(t) ∈ L2.

Proof. Consider the following candidate Lyapunov function

V4(t) = ẽ⊤(t)P ẽ(t) + γ−1
[
(σ∗

p − σ̂p(t))
2 + k̃

⊤

(t)k̃(t) + w̃⊤

f (t)w̃f (t) + w̃⊤

g (t)w̃g(t)

+ ϑ̃
⊤

(t)ϑ̃1(t) + ϑ̃
⊤

2 (t)ϑ̃2(t) + w̃⊤

a (t)w̃a(t) + (σ∗

f − σ̂f (t))2
]
. (49)

The derivative of V4(t) is computed along the trajectories of systems (41), and (46) and (48).

V̇4(t) = ẽ⊤(t)[A⊤

mP + PAm]ẽ(t) + 2ẽ⊤(t)Pbp

[
k̃
⊤

(t)xp(t) + w̃⊤

f (t)ϕf (xp) + w̃⊤

g (t)ϕg(xp)ya(t)

+ ŵ⊤

g (t)ϕg(xp)[ϑ̃
⊤

1 (t)ω1(t) + ϑ̃
⊤

2 (t)ω2(t) + w̃⊤

a (t)ω3(t) + σf (t) − σ̂f (t)sign(ỹa(t))] + σp(t,xp, ya)

− σ̂p(t)sign(ψ(t))
]
+ 2γ−1

[
− (σ∗

p − σ̂p(t)) ˙̂σp(t) − k̃
⊤

(t)
˙̂
k(t) − w̃⊤

f (t) ˙̂wf (t) − w̃⊤

g (t) ˙̂wg(t)

− ϑ̃
⊤

1 (t)
˙̂
ϑ1(t) − ϑ̃2(t)

˙̂
ϑ2(t) − w̃⊤

a (t) ˙̃wa(t) − (σ∗

f − σ̂f (t)) ˙̇σf (t)
]

= −ẽ⊤(t)Qẽ(t) + 2w̃⊤

g (t)[ψ(t)ϕg(xp)ya(t) − γ−1 ˙̂wg(t)] + 2w̃⊤

f (t)[ψ(t)ϕf (xp) − γ−1 ˙̂wf (t)]

+ 2k̃
⊤

(t)[ψ(t)xp(t) − γ−1 ˙̂
k(t)] + 2[ψ(t)σp(t,xp, ya) − σ̂p(t)|ψ(t)| − γ−1(σ∗

p − σ̂p(t)) ˙̂σp(t)]

+ 2ϑ̃
⊤

1 (t)[ψ(t)ŵ⊤

g (t)ϕg(xp)χ1(t) − γ−1 ˙̂
ϑ1(t)] + 2w̃⊤

a (t)[ψ(t)ŵ⊤

g (t)ϕg(xp)ω3(t) − γ−1 ˙̂wa(t)]

+ 2ϑ̃2(t)[ψ(t)ŵ⊤

g (t)ϕg(xp)ω2(t) − γ−1 ˙̂
ϑ2(t)] + 2ψ(t)ŵ⊤

g (t)ϕg(xp)σf (t)

− 2ŵ
⊤

g (t)ϕg(xp)σ̂
∗

f |ψ(t)| + 2ŵ
⊤

g (t)ϕg(xp)[σ
∗

f − σ̂f (t)]|ψ(t)| − 2γ−1(σ∗

f − σ̂f (t)) ˙̂σf (t)] . (50)

Substituting the adaptive laws and taking into account the properties of the projection operator12

w̃⊤

f (t)
[
ya(t)ϕg(xp)ψ(t) − Π

{
ŵg(t), ya(t)ϕg(x)ψ(t)

}]
≤ 0 (51)

ϑ̃2r(t)
[

ỹa(t)ω2r(t) + ŵg(t)ϕg(x)ψ(t)ω2r(t) − Π
{

ϑ̂2r(t), ỹa(t)ω2r(t) + ŵ⊤

g ϕg(x)ψ(t)ω2r(t)
}]

≤ 0 ,

we obtain

V̇4(t) ≤ −ẽ⊤(t)Qẽ(t) + 2ψ(t)σp(t,xp, ya) − 2σ̂p(t)|ψ(t)| − 2ỹa(t)
[
ϑ̃
⊤

1 (t)ω1(t) + ϑ̃
⊤

2 (t)ω2(t) + w̃⊤

a (t)ω3(t)
]

+ 2ψ(t)ŵ⊤

g (t)ϕg(xp)σf (t) − 2ŵ⊤

g (t)ϕg(xp)σ
∗

f |ψ(t)| − (σ∗

f − σ̂f (t))|ỹa(t)| . (52)

We notice that ψ(t)σp(t,xp, ya)−σ
∗
p |ψ(t)| ≤ 0, and ψ(t)ŵ⊤

g (t)ϕg(xp)σf (t)−ŵ⊤

g (t)ϕg(xp)σ
∗

f |ψ(t)| ≤ 0, since

ŵ⊤

g (t)ϕg(xp) is positive by construction. Moreover, from the adaptive law in (48) it follows that σ̂f (t) ≥ 0
as long as σ̂f (0) ≥ 0. Therefore the following inequality holds

(σ∗

f − σ̂f (t)|ỹa(t)| ≥ σf (t)ỹa(t) − σ̂f (t)sign(ψ(t))ỹa(t) . (53)

Taking into account the inequalities above and the error definition (45) we obtain

V̇4(t) ≤ −ẽ⊤(t)Qẽ(t) − ỹ2
a(t) , (54)



which implies that the error signals ẽ(t), k̃(t), w̃f (t), w̃g(t), σ
∗
p − σ̂p(t), ϑ̃1(t), w̃a(t), ϑ̃2(t) and σ∗

f − σ̂f (t)

are bounded. Then, the estimates k̂(t), ŵf (t), ŵg(t), σ̂p(t), ϑ̂1(t), ŵa(t), ϑ̂2(t) and σ̂f (t) are bounded as
well. At this moment we cannot conclude anything about the boundedness of ê(t), e(t), ŷa(t), ỹa(t) or ya(t).
However, we can integrate the inequality (54) and obtain

∫ t

0

[ẽ⊤(τ)Qẽ(τ) + ỹ2
a(τ)]dτ ≤ V4(0) − V4(t) . (55)

From Lemma 2 it follows that V4(t) is bounded, therefore ẽ(t) ∈ L2 and ỹa(t) ∈ L2. �

B. Adaptive control design

We are interested in designing a control signal u(t) for the cascaded system

˙̂e(t) = Amê(t) + b
[

k̂
⊤

(t)x(t) + ŵ⊤

f (t)ϕf (x) + ŵ⊤

g (t)ϕg(x)ŷa(t) + σ̂p(t)sign(ψ(t)) − νyc(t)
]

ε−1β̇2(t) = (A0 − b0k⊤

0 )β2(t) + b0u(t) , (56)

where ŷa(t) = q̂⊤(t)χ1(t) + b̂a(t)β2(t) + ŵ⊤

a (t)χa(t) + σ̂f (t)sign(ψ(t)), such that ê(t) → 0 as t → ∞. We
notice that the second system in (56) is of relative degree r, stable and minimum phase. Therefore, it can
be represented in the normal form

ε−1ω̇2(t) = A0ω2(t) + b0[−k⊤

a β2(t) + u(t)]

ε−1ξ̇
c

a(t) = Ac
0ξ

c
a(t) + bc

aω2(t) , (57)

where the triplet (c⊤0 ∈ R
r, A0 ∈ R

r×r, b0 ∈ R
r) is the normal form of representation of chain of r integrators,

and the eigenvalues of Ac
0 ∈ R

(m−r)×(m−r) are the stable zeros of the minimum phase transfer function
G(s) = c⊤0 (εsI − A0 + b0k⊤

0 )b0. The control design besides the tracking task must guarantee also the
boundedness of ω2(t). Then the boundedness of ξc

a(t) will follow from the input-to-state stability of the
internal dynamics.

To this end consider a change of variables zo(t) = Toω2(t), where To = diag(1, ε, . . . , εr−1). In these new
variables, the second equation in (56) takes the form

żo
i (t) = zo

i+1(t), i = 1, . . . , r − 1

ε−rżo
r(t) = −k⊤

0 T
−1
o z0(t) + u(t) . (58)

We notice that

ŵ
⊤

g (t)ϕg(x)ŷa(t) = ŵ
⊤

g (t)ϕg(x)
[

q̂
⊤(t)χ1(t) + ω̂(t)zo

1(t) + ŵ
⊤

a (t)χ3(t) + σ̂f (t)sign(ψ(t))
]

,

where the inequality ω̂(t) > 0 is guaranteed by the adaptive law (48). Therefore, we design the stabilizing
function zo

1(t) = α̂1(t,xp) for the tracking error prediction model as follows

α̂1(t,xp) =
−k̂

⊤

(t)xp(t) − ŵ⊤

f (t)ϕf (xp) − σ̂p(t)sign(ψ(t)) + νyc(t)

ϑ̂2r(t)ŵ
⊤

g (t)ϕg(xp)

−
q̂⊤(t)χ1(t) + ŵ⊤

a (t)χ3(t) + σ̂f (t)sign(ψ(t))

ϑ̂2r(t)
, (59)

If we introduce the variable η1(t) as in the previous section, that is η1(t) = zo
1(t) − α̂1(t,xp), the error

prediction model takes the convenient form

˙̂e(t) = Amê(t) + bŵ
⊤

g (t)ϕg(xp)η1(t) . (60)

However, the dynamics of η1(t) involves the derivative of α̂1(t,xp), which is not available in this case because
of unknown terms in the plant’s dynamics. One remedy for the situation is the command filtered approach



presented in.3 Following Ref.,3 we first filter the stabilizing function α̂1(t,xp) through a second order stable
filter

ż11(t) = ωαz12(t)

ż12(t) = −2ζαωαz12(t) − ωα[z11(t) − α̂1(t,xp)] , (61)

then use the error variable η̂1(t) = zo
1(t) − z11(t) instead of η1(t). The tracking error prediction model now

can be written as

˙̂e(t) = Amê(t) + bpŵ
⊤

g (t)ϕg(xp)η̂1(t) + bpŵ
⊤

g (t)ϕg(xp)[z11(t) − α̂1(t,xp)] , (62)

The compensated error ē(t) = ê(t) − ξ̂(t), where ξ̂(t) is defined according to equation

˙̂
ξ(t) = Amξ̂(t) + bpŵ

⊤

g (t)ϕg(xp)[z11(t) − α̂1(t,xp) + ξ̂a1(t)] , (63)

satisfies the equation

˙̄e(t) = Amē(t) + bpŵ
⊤

g (t)ϕg(xp)η̄1(t) , (64)

where η̄1(t) = η̂1(t) − ξ̂a1(t), ξ̂a1(t) is to be defined in the next step.
Following the block-backstepping7 and command filtering3 procedures, the stabilizing functions α̂i, i =

2, . . . , r are defined as follows.

α̂2(t,xp) = −λ1η̂1(t) + ωαz12(t) − (ê(t) − ξ̂(t))⊤Pbpŵ
⊤

g (t)ϕg(xp)

α̂i(t,xp) = −λi−1η̂i−1(t) − η̂i−2(t) + ωαzi−1,2(t) , i = 3, . . . , r , (65)

where η̂i(t) = zo
i (t) − zi1(t), zi1(t) is generated through the stable command filter

żi1(t) = ωαzi2(t)

żi2(t) = −2ζαωαzi2(t) − ωα[zi1(t) − α̂i(t,xp)] . (66)

The prediction models (56) in terms of error signals η̂1(t), . . . , η̂r(t) can be written in the following compact
form








˙̂e(t)
˙̂η1(t)

...
˙̂ηr−1(t)









︸ ︷︷ ︸

˙̂x(t)

=









Amê(t) + bpŵ
⊤

g (t)ϕg(xp)η̂1(t) + bpŵ
⊤

g (t)ϕg(xp)[z11(t) − α̂1(t,xp)]

−λ1η̂1(t) + η̂2(t) − (ê(t) − ξ̂(t))⊤Pbpŵ
⊤

g (t)ϕg(xp) + z21(t) − α̂2(t,xp)
...

−η̂r−2(t) − λr−1η̂r−1(t) + zr1(t) − α̂r(t,xp)









︸ ︷︷ ︸

f̂(t,x̂)

+









0

0
...

1









︸ ︷︷ ︸

ĝ

η̂r(t)

ε−r ˙̂ηr(t) = −ε−rżr1(t) + u(t) − k⊤

0 T
−1
o zo(t) (67)

The compensated error is defined as η̄i(t) = η̂i(t) − ξ̂ai(t), where ξ̂ai(t) is generated by the dynamics

˙̂
ξai(t) = −λiξ̂ai(t) + zi+1,1(t) − α̂i(t,xp) + ξ̂a,i+1(t), i = 1, r − 1

ξ̂a,r = 0 . (68)

From the above constructions it follows that η̄r(t) = η̂r(t). The dynamics of the compensated error can be
written as

˙̄η1(t) = −λ1η̄1(t) + η2(t) − ē⊤(t)Pbpŵ
⊤

g (t)ϕg(xp)

˙̄ηi(t) = −η̄i−1(t) − λiη̄i(t) + η̄i+1(t), i = 2, . . . , r − 1

ε−r ˙̄ηr(t) = −ε−rżr1(t) + u(t) − k⊤

0 T
−1
o zo(t) . (69)



We apply the singular perturbation method to the cascaded system








˙̄e(t)

˙̄η1(t)
...

˙̄ηr−1(t)









︸ ︷︷ ︸

˙̄x(t)

=









Amē(t) + bpŵ
⊤

g (t)ϕg(xp)η̄1(t)

−λ1η̄1(t) + η̄2(t) − ē⊤(t)Pbpŵ
⊤

g (t)ϕg(xp)
...

−η̄r−2(t) − λr−1η̄r−1(t)









︸ ︷︷ ︸

f̄(t,x̄)

+









0

0
...

1









︸ ︷︷ ︸

ḡ

η̄r(t)

ε−r ˙̄ηr(t) = −ε−rżr1(t) + u(t) − k⊤

0 T
−1
o zo(t) (70)

by introducing slow time variable τ = εrt. In the slow time the systems are written as

εr dx̄(τ)

dτ
= f̄ (t, x̄) + ḡη̄r(t)

dη̄r(t)

dτ
= −

dzr1(τ)

dτ
+ u(t) − k⊤

0 T
−1
o z0(t) (71)

This system is in the form of the standard singular perturbation model, if the algebraic equation

f̄ (t, x̄) + ḡη̄r(t) = 0 (72)

has isolated roots. We are not concerned about finding all the roots of the equation (72), but we are interested
in the root x̄∗ = [ē = 0 η̄1 = 0 . . . η̄r−2 = 0 η̄r−1 = λ−1

r−1η̂r(t)]
⊤, which we denote by x̄∗ = h(t, η̄r).

Introducing a change of variables ζ(τ) = x̄(τ) − h(t, η̄r), the boundary layer system is obtained from the
first equation in (71) as follows

dζ(t)

dt
= f̄(t, ζ + h(t, η̄r) + ḡη̄r(t) = f̄(t, ζ) . (73)

The system (73) has its equilibrium at the origin. The following lemma shows that it is globally exponentially
stable.

Lemma 4 The boundary layer system (73) is globally exponentially stable.

Proof. Consider a candidate Lyapunov function

V5(t) = ē⊤(t)P ē(t) + η̄2
1(t) + · · · + η̄2

r−1(t) . (74)

It is straightforward to compute its derivative along the solutions of system (73). After some algebra we
obtain

V̇5(t) = −ē⊤(t)Qē(t) − λ1η̄
2
1(t) − · · · − λr−1η̄

2
r−1(t) . (75)

Denoting µ = λ−1
max(P )min

[
λ−1

min(Q), λ1, . . . , λr−1

]
the following inequality can be readily derived

V̇5(t) ≤ −µv5(t) , (76)

which along with the radial unboundedness of V5(t) implies the global exponential stability of (73). �

The reduced model is derived from the second equation in (71) by substituting x̄(τ) = h(τ, η̄r) and ε = 0.
Since the only term k⊤

0 T
−1
o z0(t) does not explicitly depend on x̄, we can write the reduced system in the

form

dη̄r(τ)

dτ
= −

dzr1(τ)

dτ
+ v(t) − k⊤

0 T
−1
o z0(t) . (77)

The control signal v(τ) is designed in the actual time scale as

u(t) = −λr η̄r(t) + k⊤

0 T
−1
o z0(t) + ε−rωαzr2(t) , (78)

which in the actual time scale results in the following closed-loop reduced system

˙̄ηr(t) = −εrλr η̄r(τ) . (79)



Obviously the reduced system has a globally exponentially stable equilibrium at the origin. The rest of the
conditions of Theorem 1 follow from the smoothness and boundedness assumptions imposed on the reference
input, as well as on the plant’s and actuators’s dynamics. Therefore, for all t ≥ 0 the singular perturbation
problem (71) has a unique solution x̄(t, ε), η̄r(t, ε) with initial conditions x̄(0) and η̄r(0)) respectively, and
the relationship

η̄r(t, ε) − η̄r(t) = O(ε) (80)

holds, where η̄r(t) is the unique solution of the reduced system with initial condition η̄r(0) = zo
r (0)− zr1(0).

Moreover, there exists a time instance T (ǫ) such that the relationship

x̄(t, ε) − h(t, η̄r(t)) = O(ε) (81)

holds for all t ≥ T (ε). From the exponential stability of (79) it follows that there exists time instant T1 such
that η̄r(t) = O(ε) for t ≥ T1. Then, from the definition of h(t, η̄r(t)) it can be seen that the relationship
h(t, η̄r(t)) = O(ε) holds for t ≥ T1. Therefore,

x̄(t, ε) = O(ε) , (82)

holds for t ≥ max[T (ǫ), T1]. Next, we apply the result of Ref.3 to the error systems (19) and (67). Since
x̄(t, ε) = O(ε) and η̄r(t) = O(ε) for all t ≥ max[T (ε), T1], it can be shown that

x̂(t, ε) = O(ε) +O(ω−1
α )

η̂r(t, ε) = O(ε) +O(ω−1
α ) (83)

for all t ≥ max[T (ε), T1], where [x̂(t, ε) η̂r(t, ε)] is the solution of the error prediction system (67).
From (83) it follows that ê(t) and η̂(t) are bounded. Then, from Lemma 2 it follows that e(t) is bounded.

Since the reference command yc(t) is bounded, xm(t) is bounded, implying the boundedness of xp(t). Since
Lemma 2 guarantees the boundedness of the parameter estimates, it follows that the stabilizing functions
αi(t,xp), i = 1, . . . , r are bounded, implying also boundedness of (zi1(t), zi2(t)), i = 1, . . . , r. Then from the
definition of error signal η̂(t) it follows that zo(t) is bounded, implying the boundedness of ŷa(t) and β2(t).
Then the control signal u(t) is bounded as well. From the the definition of ŷa(t) (44) it follows that ω1(t) is
bounded, hence β1(t) is bounded. Then from the filter equation (42) it follows that ya(t) is bounded. That
is, all closed loop signals are bounded. Therefore, ˙̃e(t) and ˙̃ya(t) are bounded. From the Barabalat’s14 it
follows that ẽ(t) → 0 and ỹa(t) → 0 as t→ ∞.

The obtained results are formulated in the form of the following theorem.

Theorem 2 Consider the uncertain plant (8) and slow actuator (9). The adaptive controller given by (28),
along with the stabilizing functions (14) and (18), auxiliary filters (61) and (66), the prediction models (40)
and (44), and the adaptive laws (46), (47) and (48), guarantees that the plant’s output tracks the output of
the given reference model (10) with the error directly proportional to the small parameter in the actuator’s
dynamics and inversely proportional to the frequency of the filters (61).

VI. Simulation Example

We demonstrate the benefits of the approach on a first order unstable system

ẋp(t) = x2
p(t) + xa(t) , (84)

controlled by the actuator

ẋa(t) = −0.1(xa(t) − u(t)) . (85)

For this simulation, the control objective is to track a reference command yc(t) = 1. That is e(t) = xp(t)−1.
The control signal ub(t) takes the form

η(t) = xa(t) + ame(t) + x2
p(t) (86)

ub(t) = −kaη(t) + xa(t) − ε−1e(t) − ε−1
{
a2

me(t) − amη(t) − 2xp(t)
[
x2

p(t) + xa(t)
]}

,
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Figure 1. Output tracking performance for different control strategies.

whereas the signal up(t) has form

up(t) = −kaη(t) + xa(t) + ε−1

{

2

(
1

am

η(t) + 1

)3

+ xa(t)

(
1

am

η(t) + 1

)}

.

Figure 1 displays the tracking performance for three controllers: feedback linearization, backstepping
design and proposed design with time scale reparation. For the backstepping design and proposed design
the control gains are the same: am = 3, ka = 1. For the feedback linearization the control gains are chosen
such that the eigenvalues of the resulting error systems are the same. As it can be seen from the plots the
tracking is almost the same. The actuator’s output performance is displayed in Fig. 2 and the control signals
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Figure 2. Actuator’s output performance for different control strategies.

are displayed in Fig. 3. As it can be seen the magnitude of the control signal generated by the singular
perturbations method based approach is substantially smaller the that of generated by feedback linearization
and backstepping design.

We notice that with the control signal up(t), the error system that is comprised of the boundary layer
system and reduced system has eigenvalues −3 and −0.1. Next we run the simulation for the feedback
linearization and backstepping approach with the gains chosen such that the error system has poles at the
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Figure 3. Control signals for different control strategies.

same location. The tracking performance and the corresponding control signals are displayed in Fig. and
Fig. respectively. As it can be seen from the figures the tracking is sluggish for both designs, as it is expected,
though the control signals have smaller magnitude.
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Figure 4. Output tracking performance for backstepping and feedback linearization with poles at −3 and −0.1.

VII. Conclusion

We considered a problem of controlling a plant with a slow actuator. It has been shown that the
singular perturbations method can be applied for this problem. The resulting control signal has substantially
smaller magnitude than one generated by conventional design technique, although the tracking error can be
guaranteed to be only bounded with the bound proportional to the small parameter in actuator’s dynamics.
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